Testi del Syllabus

Resp. Did. MERONI GERMANA

Matricola: 022803

Docenti

MALLAMACI ANTONIO, 3 CFU
MERONI GERMANA, 3 CFU

Anno offerta: 2017/2018

Insegnamento: 672SM - NEUROGENETICA DELLO SVILUPPO

Corso di studio: SM54 - NEUROSCIENZE

Anno regolamento: 2017

CFU: 6

Settore: BIO/18

Tipo Attività: B - Caratterizzante

Anno corso: 1

Periodo: Primo Semestre

Sede: TRIESTE

Testi in italiano

<table>
<thead>
<tr>
<th>Lingua insegnamento</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Testi di riferimento | Material provided during the course as Lecture presentations and original research articles and reviews. Suggested support book: Developmental Biology, Gilbert, 9th-11th ed.
--- | ---
Obiettivi formativi | The aim of this course is to provide the bases for understanding nervous system organization through the study of the major events of brain and spinal cord embryological development, at the genetic, molecular and cellular level. Additionally, the course provides the instruments to understand the experimental genetic approaches that are necessary to undertake neurodevelopment studies.
--- | ---
Prerequisiti | Basic knowledge of Molecular Biology, Cellular Biology and Genetics
--- | ---
Metodi didattici | Traditional lectures integrated with Journal clubs discussing seminal research papers on neurodevelopmental genetics.
--- | ---
Altre informazioni | None
--- | ---
Modalità di verifica dell'apprendimento | Students will be required to take a final examination that consists of: i) a written part with 20 multiple choice questions (in 1:30 hour time); ii) a 20-30 minute-oral-interview to discuss the written test as well as other topics addressed during the course.
--- | ---
Programma esteso | The course will address central nervous system embryonic development in vertebrate species, in particular mammals, at genetic, molecular and cellular levels. During the course, the experimental tools necessary for investigating the above topics will be also discussed. The course is given by prof. Germana Meroni and prof. Antonello Mallamaci; the contents of the course are illustrated here below.
Early vertebrate development, from cleavage to gastrulation, and body axes specification.
The course will address central nervous system embryonic development in vertebrate species, in particular mammals, at genetic, molecular and cellular levels. During the course, the experimental tools necessary for investigating the above topics will be also discussed.

The course is given by prof. Germana Meroni and prof. Antonello Mallamaci; the contents of the course are illustrated here below.

Early vertebrate development, from cleavage to gastrulation, and body axes specification.

Material provided during the course as Lecture presentations and original research articles and reviews. Suggested support book: Developmental Biology, Gilbert, 9th-11th ed.

The aim of this course is to provide the bases for understanding nervous system organization through the study of the major events of brain and spinal cord embryological development, at the genetic, molecular and cellular level. Additionally, the course provides the instruments to understand the experimental genetic approaches that are necessary to undertake neurodevelopment studies.

Basic knowledge of Molecular Biology, Cellular Biology and Genetics

Traditional lectures integrated with Journal clubs discussing seminal research papers on neurodevelopmental genetics.

None

Students will be required to take a final examination that consists of: i) a written part with 20 multiple choice questions (in 1:30 hour time); ii) a 20-30 minute oral interview to discuss the written test as well as other topics addressed during the course.

Basic knowledge of Molecular Biology, Cellular Biology and Genetics

Traditional lectures integrated with Journal clubs discussing seminal research papers on neurodevelopmental genetics.

None