Testi del Syllabus

Resp. Did.
BATTAGLINI PIERO PAOLO
Matricola: 003861

Docenti
BALLERINI LAURA, 4 CFU
BATTAGLINI PIERO PAOLO, 3 CFU

Anno offerta: 2020/2021
Insegnamento: 898SM - NEUROFISIOLOGIA INTEGRATIVA
Corso di studio: SM54 - NEUROSCIENZE
Anno regolamento: 2020
CFU: 7
Settore: BIO/09
Tipo Attività: B - Caratterizzante
Anno corso: 1
Periodo: Secondo Semestre
Sede: TRIESTE

Testi in italiano

Lingua insegnamento
Inglese

Contenuti (Dipl.Sup.)
The course is organized in two independent modules, given by two different teachers, each of them expert in the particular one. The program is aimed at providing wide information on the more actual approaches to study the activity of the living brain and on fundamental aspects of neuronal integration, from the integrative processes which are carried on by neuronal membranes to neuronal networks, to sensory-motor integration and movement production.

Main topics which will be presented.

Part 1: Membrane biophysics and cell excitability. Brain waves generation and oscillatory mechanisms. Thalamo-cortical rhythms, spindle waves and delta waves. Role of particular membrane properties, such as voltage dependent ion channels, or synaptic properties. Role of voltage dependent ion channels. Thalamo-cortical rhythm.

Testi di riferimento

Kandel, Principles of Neuronal Science, Mc Graw-Hill
Hille “Ionic channels of excitable membranes” Sinauer ass.editors [second or third edition]. In particular from chapter 1 to 5.

The presentation of the lectures and a collection of papers are provided
Obiettivi formativi

The course aims to ensure that students acquire:

1) Knowledge and understanding, possessing a thorough knowledge of the fundamental principles underlying the different, but fundamental, aspects of neuronal integration at several levels of the central nervous system. These will comprise different aspects, from the integrative processes which are carried on by neuronal membranes to neuronal networks, main aspect of sensory-motor integration, such as reflex and voluntary movement, till to the more actual approaches to study the activity of the living brain.

2) Applying knowledge and understanding, acquiring the theoretical basis for understanding the most basic procedures related to the acquisition of the most sophisticated biological information from a living brain.

3) Making judgment, acquiring a correct vision of the functioning of the nervous system, with particular emphasis on the basic processes of integration, both at cellular and systemic level.

4) Communication skills, getting used to the exhibition, in the classroom, of the concepts requested by the teacher, in a stimulated and interactive teaching environment. Students will always be urged to keep in mind the need for scientifically rigorous exposure and communication with colleagues and the general public. They will be stimulated to express themselves in a correct and essential language.

5) Learning skills. At the end of the course the students will possess knowledge and critical reading abilities to continue their training independently, adapting themselves to new knowledge and technologies in the understanding of the integrative processes acting in the brain.

Prerequisiti

Basic knowledge of physics, chemistry and elementary mathematics.

Good knowledge of neuroanatomy

Knowledge in cell physiology

Good knowledge of basic neurobiology

Metodi didattici

Lezioni Frontali.

Eventuali cambiamenti alle modalità descritte, che si rendessero necessari per garantire l'applicazione dei protocolli di sicurezza legati all'emergenza COVID19, saranno comunicati nel sito web di Dipartimento, del Corso di Studio e dell'insegnamento.

Altre informazioni

Any necessary change in the course modalities due to COVID19 emergency will be published at the Department, Master Programme and Course websites.

Modalità di verifica dell'apprendimento

Students are required to take a final written examination (part 1) and an oral one (part 2). The written examination consists in a multiple choices test (true/false) and 2 open questions on the topic of the courses. The oral examination consists in a discussion of 20-30 min, during which the student is invited to describe and comment on topics covered in the course.

Programma esteso

The course is organized in two independent modules, given by two different teachers, each of them expert in the particular topic. The program is aimed at providing wide information on fundamental aspects of neuronal integration at several levels in the central nervous system, from the integrative processes which are carried on by neuronal membranes to neuronal networks, to sensory-motor integration and movement production, till to the more actual approaches to study the activity of the living brain.

Part 1: The main aim of these Lectures is to provide fundamentals in membrane biophysics and in the mechanisms characterizing cell excitability; to translate single cell knowledge towards rules governing small networks behavior in more complex systems. The focus will be on brain waves generation and neuronal mechanisms sustaining such activities, from neuronal membrane to neuronal networks. Oscillatory mechanisms: cellular and network analysis of oscillatory neural systems. Thalamo-cortical rhythms, spindle waves and delta waves, contribution of thalamic neuron properties and circuits. Recent published experimental evidences will be presented within the framework of theoretical concepts sustaining brain waves mechanisms. At a cellular level experimental evidence supporting the role of particular membrane properties, such as voltage dependent ion channels, or synaptic properties, such as microcircuit organization enabling oscillating activities in cortical
The course is organized in two independent modules, given by two different teachers, each of them expert in the particular one. The program is aimed at providing wide information on the more actual approaches to study the activity of the living brain and on fundamental aspects of neuronal integration, from the integrative processes which are carried on by neuronal membranes to neuronal networks, to sensory-motor integration and movement production.

Main topics which will be presented.

Part 1: Membrane biophysics and cell excitability. Brain waves generation and oscillatory mechanisms. Thalamo-cortical rhythms, spindle waves and delta waves. Role of particular membrane properties, such as voltage dependent ion channels, or synaptic properties. Role of voltage dependent ion channels. Thalamo-cortical rhythm.

Kandel, Principles of Neuronal Science, Mc Graw-Hill
Hille “Ionic channels of excitable membranes” Sinauer ass.editors [second or third edition]. In particular from chapter 1 to 5.

The presentation of the lectures and a collection of papers are provided.
The course aims to ensure that students acquire:

1) **Knowledge and understanding**, possessing a thorough knowledge of the fundamental principles underlying the different, but fundamental, aspects of neuronal integration at several levels of the central nervous system. These will comprise different aspects, from the integrative processes which are carried on by neuronal membranes to neuronal networks, main aspect of sensory-motor integration, such as reflex and voluntary movement, till to the more actual approaches to study the activity of the living brain.

2) **Applying knowledge and understanding**, acquiring the theoretical basis for understanding the most basic procedures related to the acquisition of the most sophisticated biological information from a living brain.

3) **Making judgment**, acquiring a correct vision of the functioning of the nervous system, with particular emphasis on the basic processes of integration, both at cellular and systemic level.

4) **Communication skills**, getting used to the exhibition, in the classroom, of the concepts requested by the teacher, in a stimulated and interactive teaching environment. Students will always be urged to keep in mind the need for scientifically rigorous exposure and communication with colleagues and the general public. They will be stimulated to express themselves in a correct and essential language.

5) **Learning skills**. At the end of the course the students will possess knowledge and critical reading abilities to continue their training independently, adapting themselves to new knowledge and technologies in the understanding of the integrative processes acting in the brain.

Basic knowledge of physics, chemistry and elementary mathematics.

Good knowledge of neuroanatomy

Knowledge in cell physiology

Good knowledge of basic neurobiology

Frontal lectures.

Any change to the methods described, which become necessary to ensure the application of the safety protocols related to the COVID19 emergency, will be communicated on the web sites of the Department and of the Study Program.

Any necessary change in the course modalities due to COVID19 emergency will be published at the Department, Master Programme and Course websites.

Students are required to take a final written examination (parts 1 and 2) and an oral one (part 3). The written examination consists in a multiple choices test (true/false) and 2 open questions on the topic of the courses. The oral examination consists in a discussion of 20-30 min, during which the student is invited to describe and comment on topics covered in the course.

The course is organized in two independent modules, given by two different teachers, each of them expert in the particular topic. The program is aimed at providing wide information on fundamental aspects of neuronal integration at several levels in the central nervous system, from the integrative processes which are carried on by neuronal membranes to neuronal networks, to sensory-motor integration and movement production, till to the more actual approaches to study the activity of the living brain.

Part 1: The main aim of these Lectures is to provide fundamentals in membrane biophysics and in the mechanisms characterizing cell excitability; to translate single cell knowledge towards rules governing small networks behavior in more complex systems. The focus will be on brain waves generation and neuronal mechanisms sustaining such activities, from neuronal membrane to neuronal networks. Oscillatory mechanisms: cellular and network analysis of oscillatory neural systems. Thalamo-cortical rhythms, spindle waves and delta waves, contribution of thalamic neuron properties and circuits. Recent published experimental evidences will be presented within the framework of theoretical concepts sustaining brain waves mechanisms. At a cellular level experimental evidence supporting the role of particular membrane properties, such as voltage dependent ion channels, or synaptic properties, such as microcircuit organization enabling oscillating activities in cortical...
networks reflected in EEG activities will be addressed and presented. In particular the following systems will be addressed: Oscillatory mechanisms: cellular and synaptic contributions (network driven rhythmicity vs pacemaker driven one). Voltage dependent ion channels: calcium channels (HVA and LVA) with particular attention to It; IKCa; ICAN; Ih; IIR; IAHP (BK and SK) and others Thalamo-cortical rhythm. Part 2: Spinal reflexes: monosynaptic reflex and general organization of the spinal cord. Brainstem reflexes: vestibular reflexes, orienting reflex. Stability of visual perception. Somaesthesia: overview of sensory modalities and receptors, sensory transduction, cutaneous mechanoreceptors, receptive field, coding of stimulus intensity and duration, tactile acuity, lemniscal and spino-thalamic pathways; primary sensory area, coding of stimulus location and modality. Cerebral cortex: functional subdivisions, Brodmann’s areas, cortical columns, maturation of the cerebral cortex, cortical plasticity, primary and association areas. Voluntary movement: kinds of movement and their control, motor equivalence, overall organization of the motor systems, pyramidal tract, primary motor cortex, premotor areas, working memory, mirror neurons, functional streams, action and perception, timing for motor production. Basal ganglia and cerebellum: relation of basal ganglia with the cerebral cortex, direct and indirect pathways, disorders of the basal ganglia, functional organization of the cerebellum, input and output pathways, disorders of the cerebellum. Pain: peripheral mechanisms, central pathways and cortical localization. Central control of pain