Testi del Syllabus

Resp. Did. LONGO RENATA Matricola: 003135
Docente UKMAR MAJA Matricola: 011326

Anno offerta: 2015/2016
Insegnamento: 895SM - TECNICHE NEUROFUNZIONALI
Corso di studio: SM54 - NEUROSCIENZE
Anno regolamento: 2014
CFU: 10
Settore: FIS/07
Tipo Attività: C - Caratterizzante
Anno corso: 2
Periodo: Primo Semestre
Sede: TRIESTE

Testi in italiano

Lingua insegnamento English

Contenuti (Dipl.Sup.)

Computed Tomography: basic principles, recent techniques and application in brain imaging. Magnetic resonance imaging (MRI): basic principles. Functional MRI: physical and physiological basis. fMRI experimental design: blocks and event relates paradigms data analysis in fMRI: images processing and statistical analysis Exercise in small groups at the MRI unit of the Cattinara hospital: Block design experiments, image acquisition and data analysis. Diffusion weighted images (DWI) and diffusion tensor imaging (DTI): physical basics. DTI in brain imaging: a technique for neurons bundles study Fiber tacking based on DTI data set. Exercise in small groups at the MRI unit of the Cattinara hospital: DTI experiments, image acquisition and data analysis. Introduction to Manganese enhanced MRI. Radioisotopes imaging: single photon emission tomography (SPECT) and positron emission tomography (PET). Physical and physiological basics. Introduction to biological effects of ionizing radiation and radiobiology. The challenge of integration: EEG and MRI or PET, PET and CT or MRI. Introduction to the technical problems and the expected results.

Statistical tools: characters, modalities, rank, frequency
Statistical parameters: mean, variance, median, moments, etc.
Probability distributions: Gaussian, Binomial, Poisson, t-Student, 2, Fisher
Normal plot
Statistical Inference, confidence interval
Optimal dimension of a sample
Test of hypothesis: H0, significance level, errors of first and second kind
Parametric and non parametric tests
Tests on one sample: z-test, t-test, binomial test, sign test, Wilcoxon rank sum test, 2 test, Kolmogorov test
Tests on two samples: z-test, t-test, Fisher test, Mann-Whitney test, Frequency tables rXc
Tests on more than two samples: ANOVA test, Bartlett test, Kruskal-Wallis test

The course will outline and discuss the making of a scientific publication.
from the moment an experiment is designed to the time the publication reaches an audience, which must of course be as wide as possible.

| Testi di riferimento | The essential of functional MRI. P. W. Stroman CRC press 2011
| Relevant slides and pdf will be provided during classes. |

| Obiettivi formativi | Understanding the physical and physiological basis of the modern techniques used in human brain mapping.
| To be able of designing and performing an MRI study for brain mapping. |
| The aim of the course is to provide introductory information that should help the participants to improve their skills in manuscript preparation, so as to increase the chance of their papers being accepted by a peer-reviewed international journal. |

| Metodi didattici | Lectures and small group tutorials at the MRI unit |

| Modalità di verifica dell'apprendimento | oral examination
| preparation of a short (200 words) abstract based on a ‘blind’ manuscript |

| Programma esteso | Computed Tomography: basic principles, recent techniques and application in brain imaging. Magnetic resonance imaging (MRI): basic principles. Functional MRI: physical and physiological basis. fMRI experimental design: blocks and event relates paradigms data analysis in fMRI: images processing and statistical analysis
| Exercise in small groups at the MRI unit of the Cattinara hospital: Block design experiments, image acquisition and data analysis. Diffusion weighted images (DWI) and diffusion tensor imaging (DTI): physical basics. DTI in brain imaging: a technique for neurons bundles study Fiber tacking based on DTI data set. Exercise in small groups at the MRI unit of the Cattinara hospital: DTI experiments, image acquisition and data analysis. Introduction to Manganese enhanced MRI. Radioisotopes imaging: single photon emission tomography (SPECT) and positron emission tomography (PET). Physical and physiological basics. Introduction to biological effects of ionizing radiation and radiobiology. The challenge of integration: EEG and MRI or PET, PET and CT or MRI. Introduction to the technical problems and the expected results. |
| Statistical tools: characters, modalities, rank, frequency |
| Statistical parameters: mean, variance, median, moments, etc. |
| Probability distributions: Gaussian, Binomial, Poisson, t-Student, 2, Fisher |
| Normal plot |
| Statistical Inference, confidence interval |
| Optimal dimension of a sample |
| Test of hypothesis: H0, significance level, errors of first and second kind |
| Parametric and non parametric tests |
| Tests on one sample: z-test, t-test, binomial test, sign test, Wilcoxon rank sum test, 2 test, Kolmogorov test |
| Tests on two samples: z-test, t-test, Fisher test, Mann-Whitney test, Frequency tables rXc |
| Tests on more than two samples: ANOVA test, Bartlett test, Kruskal-Wallis test |

The course will outline and discuss the making of a scientific publication from the moment an experiment is designed to the time the publication reaches an audience, which must of course be as wide as possible.
<table>
<thead>
<tr>
<th>Lingua insegnamento</th>
<th>English</th>
</tr>
</thead>
</table>
| **Contenuti (Dipl.Sup.)** | Computed Tomography: basic principles, recent techniques and application in brain imaging. Magnetic resonance imaging (MRI): basic principles. Functional MRI: physical and physiological basis. fMRI experimental design: blocks and event relates paradigms data analysis in fMRI: images processing and statistical analysis. Exercise in small groups at the MRI unit of the Cattinara hospital: Block design experiments, image acquisition and data analysis. Diffusion weighted images (DWI) and diffusion tensor imaging (DTI): physical basics. DTI in brain imaging: a technique for neurons bundles study. Fiber tracking based on DTI data set. Exercise in small groups at the MRI unit of the Cattinara hospital: DTI experiments, image acquisition and data analysis. Introduction to Manganese enhanced MRI. Radioisotopes imaging: single photon emission tomography (SPECT) and positron emission tomography (PET). Physical and physiological basics. Introduction to biological effects of ionizing radiation and radiobiology. The challenge of integration: EEG and MRI or PET, PET and CT or MRI. Introduction to the technical problems and the expected results.
Statistical tools: characters, modalities, rank, frequency
Statistical parameters: mean, variance, median, moments, etc.
Probability distributions: Gaussian, Binomial, Poisson, t-Student, 2, Fisher
Normal plot
Statistical Inference, confidence interval
Optimal dimension of a sample
Test of hypothesis: H0, significance level, errors of first and second kind
Parametric and non parametric tests
Tests on one sample: z-test, t-test, binomial test, sign test, Wilcoxon rank sum test,
Z test, Kolmogorov test
Tests on two samples: z-test, t-test, Fisher test, Mann-Whitney test, Frequency
tables rXc
Tests on more than two samples: ANOVA test, Bartlett test, Kruskal-Wallis test
The course will outline and discuss the making of a scientific publication from the
moment an experiment is designed to the time the publication reaches an audience,
which must of course be as wide as possible. |
| **Testi di riferimento** | The essential of functional MRI. P. W. Stroman CRC press 2011
Relevant slides and pdf will be provided during classes. |
| **Obiettivi formativi** | Understanding the physical and physiological basis of the modern techniques used
in human brain mapping.
To be able of designing and performing an MRI study for brain mapping.
The aim of the course is to provide introductory information that should help the
participants to improve their skills in manuscript preparation, so as to increase the
chance of their papers being accepted by a peer-reviewed international journal. |
| **Metodi didattici** | Lectures and small group tutorials at the MRI unit |
| **Modalità di verifica dell'apprendimento** | oral examination
preparation of a short (200 words) abstract based on a ‘blind’ manuscript |
| **Programma esteso** | Computed Tomography: basic principles, recent techniques and application in brain imaging. Magnetic resonance imaging (MRI): basic principles. Functional MRI: physical and physiological basis. fMRI experimental design: blocks and event relates paradigms data analysis in fMRI: images processing and statistical analysis. Exercise in small groups at the MRI unit of the Cattinara hospital: Block design experiments, image acquisition and data analysis. Diffusion weighted images (DWI) and diffusion tensor imaging (DTI): physical basics. DTI in brain imaging: a technique for neurons |
bundles study Fiber tacking based on DTI data set. Exercise in small groups at the MRI unit of the Cattinara hospital: DTI experiments, image acquisition and data analysis. Introduction to Manganese enhanced MRI. Radioisotopes imaging: single photon emission tomography (SPECT) and positron emission tomography (PET). Physical and physiological basics. Introduction to biological effects of ionizing radiation and radiobiology. The challenge of integration: EEG and MRI or PET, PET and CT or MRI. Introduction to the technical problems and the expected results.

Statistical tools: characters, modalities, rank, frequency
Statistical parameters: mean, variance, median, moments, etc.
Probability distributions: Gaussian, Binomial, Poisson, t-Student, 2, Fisher
Normal plot
Statistical Inference, confidence interval
Optimal dimension of a sample
Test of hypothesis: H0, significance level, errors of first and second kind
Parametric and non parametric tests
Tests on one sample: z-test, t-test, binomial test, sign test, Wilcoxon rank sum test, 2 test, Kolmogorov test
Tests on two samples: z-test, t-test, Fisher test, Mann-Whitney test, Frequency tables rXc
Tests on more than two samples: ANOVA test, Bartlett test, Kruskal-Wallis test

The course will outline and discuss the making of a scientific publication from the moment an experiment is designed to the time the publication reaches an audience, which must of course be as wide as possible.