Testi in italiano

<table>
<thead>
<tr>
<th>Lingua insegnamento</th>
<th>English</th>
</tr>
</thead>
</table>

Contenuti (Dipl.Sup.)

The course is composed of two parts:

PART 1 (Prof. Marcon Gabriella): NEUROANATOMY
- Introduction to the Neuroanatomy
- Overview to the main histological structures of the Central Nervous System and Peripheral Nervous System.
- Overview to development of CNS, brain plasticity and brain aging.
- General features and external morphology of the CNS
 - Meninges, cisterns, ventricles
 - Internal morphology:
 1. Spinal Cord: gray horns and ascending and descending pathways
 2. Autonomic Nervous System
 3. Brainstem
 4. Cerebellum
 5. Reticular Formation
 6. Thalamus, Hypothalamus and Epithalamus
 7. Basal Ganglia
 8. Limbic System
 9. Telencephalon
 - Blood supply of the brain and spinal cord

PART 2 (Prof. Gabriele Stocco): NEUROPHARMACOLOGY

THE AUTONOMIC NERVOUS SYSTEM: Anatomical and functional aspects.
Cholinergic transmission: nicotinic and muscarinic receptors, classification and pharmacological features. Adrenergic transmission: receptor classification and pharmacological features.

THE ENDOGENOUS OPIOIDS' SYSTEM: Endogenous opioids synthesis and degradation. Opioid receptors classification and pharmacological features

OPIOIDS and opioid derivatives

ANTIDEPRESSANT DRUGS: ethiopathogenesis of depression. The monoaminergic, neuroendocrine and neurotrophic theories. Antidepressant drugs classifications and mechanisms of action

ANTIPSYCHOTIC DRUGS: ethiopathogenesis of psychosis. The dopaminergic and neurodevelopmental theories. Typical and atypical antipsychotic drugs and mechanisms of action.

ANXIOLYTIC DRUGS. Neuronal circuits of anxiety. Anxiolytic drugs: classification and mechanisms of action

ANTI-EPILEPTIC DRUGS: ethiopathogenesis of epilepsy. Antiepileptic drugs: classification and mechanisms of action

PHARMACOGENOMICS AND DRUGS OF THE CENTRAL NERVOUS SYSTEM
Elements of human genetic variation - basis on genetic variants affecting protein function and epigenetic effects of pharmacological relevance. Clinical pharmacogenetic implementation guidelines for drugs acting on the central nervous system.

Testi di riferimento

PART1: NEUROANATOMY
1) Lecture notes (PDF)
2) Fitzgerald's Clinical Neuroanatomy and Neuroscience, Authors: Estomih Mtui, Gregory Gruener, Peter Dockery; 8th Edition - August 4, 2020

PART 2: NEUROPHARMACOLOGY
Rang, Ritter, Flower, Henderson "Rang & Dale's Pharmacology"

Obiettivi formativi

PART 1 - NEUROANATOMY
- Knowledge of the microscopic and macroscopic structures and functions of the Central Nervous System.
- Understanding morphology of the different neuroanatomical areas in relation to their function: (A) Central Nervous System (from Spinal Cord to Multimodal Association Cortex and Ascending and Descending Tracts); (B) Peripheral Nervous System and Autonomic Nervous System (course and function of Spinal Nerves and Cranial Nerves)-
- Being able to know the anatomical areas and their functions in normal and pathological conditions in relation to the main neurological disorders
- Ability to use the correct neuroanatomical terminology; improving knowledge autonomously by reading scientific papers and textbooks and consult the scientific websites relevant to the topic.

The overall aim of the part 1 is to provide students with a basic understanding of the structural (and functional) organization of the human central nervous system (Knowledge and understanding), in sufficient depth to form the basis for further clinical or research studies (Applying knowledge and understanding; Making judgements; Communication and Learning skills).

PART 2: NEUROPHARMACOLOGY

To provide robust basis of Neuropharmacology, discussing the principles at the basis of the pharmacokinetic, pharmacodynamics and pharmacogenomics properties of drugs, particularly of those acting at the peripheral and central nervous system
1) Knowledge and understanding: at the end of the course, the students should have acquired the basic notions for the comprehension of the pharmacokinetic and pharmacodynamics properties of drugs and of their mechanism of action, with particular reference to drugs acting at the central nervous system.

2) Applying knowledge and understanding: at the end of the course, the students should be able to use the knowledges acquired (see point 1) for a proper use of drugs in experimental set-ups (in vivo as well as in vitro) as tools to validate hypothesis regarding the involvement of endogenous neurotransmitters in controlling physio-pathological conditions.

3) Making judgements: at the end of the course, the students should be able to apply their pharmacokinetic and pharmacodynamics knowledges for a critical consideration of experimental results aimed at investigating the involvement of signaling molecules in physiological and pathological processes.

4) Communication skills: at the end of the course, the students should be able to discuss clearly and with appropriate scientific terms pharmacological concepts.

5) Learning skills: at the end of the course, the students should have a well-build background that should enable them to continue to enlarge autonomously and critically their knowledges about the pharmacokinetic and pharmacodynamics properties of drugs.

Prerequisiti
No prerequisites

Metodi didattici

PART1 - NEUROANATOMY: The program is constituted by frontal lessons (slides, neuroanatomy and techniques of brain cutting video and examples of clinic cases).

PART 2 - NEUROPHARMACOLOGY: Computer-aided frontal lectures (slides with images and short texts reassuming the essential aspects of the lessons)

Altre informazioni
Students are provided by the slides used during the frontal lessons thought Moodle. For further information, students are invited to contact prof. Stocco by mail (stoccog@units.it) using their institutional E-mail address.

Any necessary change in the course modalities due to COVID19 emergency will be published at the Department, Master Programme and Course websites.

Modalità di verifica dell'apprendimento

PART 1 - NEUROANATOMY: a) During the course: written test with multiple choice questions (30 questions with one correct answer and several wrong answers with a point for each correct answer and zero for wrong answers or no answers); b) At the end of the course: oral examination, in which the student must be able to use the correct neuroanatomical terminology and to know the main anatomical areas and their main functions, the sensory and motor pathways, the autonomic nervous system and blood supply of the brain. The final grade is explained below.

PART 2 - NEUROPHARMACOLOGY: At the end of the course, students are required to take a final oral examination of 20-40 min consisting on two different topics covering the course program. The student should demonstrate to be able to link together different topics of the program and to communicate the acquired knowledges in a precise and efficacious manner. The mark/30 must be equal or higher than 18. The final mark/30 is the arithmetic mean of Part 1 (Neuroanatomy) and Parts 2 (Neuropharmacology).

Programma esteso

NEUROANATOMY
Main features of structure of Central and Peripheral Nervous System: Structure of the Neuron and Glia and Organization of the Nervous Tissue.

DEVELOPMENT, AGING AND PLASTICITY:
The Role of Environment in Development of the Nervous System; Age-Related Changes in the Normal Brain and Their Consequences; Age-Related Changes in Neurodegenerative Disorders.

THE AUTONOMIC NERVOUS SYSTEM
Sympathetic System.
The course is composed of two parts:

PART 1 (Prof. Marcon Gabriella): NEUROANATOMY
- Introduction to the Neuroanatomy
- Overview to the main histological structures of the Central Nervous System and Peripheral Nervous System.
- Overview to development of CNS, brain plasticity and brain aging.
- General features and external morphology of the CNS
- Meninges, cisterns, ventricles
- Internal morphology:
 1. Spinal Cord: gray horns and ascending and descending pathways
 2. Autonomic Nervous System
 3. Brainstem
 4. Cerebellum
 5. Reticular Formation
 6. Thalamus, Hypothalamus and Epithalamus
 7. Basal Ganglia
 8. Limbic System
 9. Telencephalon
- Blood supply of the brain and spinal cord

PART 2 (Prof. Gabriele Stocco): NEUROPHARMACOLOGY PHARMACODYNAMICS: Drug moleculars target: classification. Dose-effect

THE ENDOGENOUS OPIOIDS’ SYSTEM: Endogenous opioids synthesis and degradation. Opioid receptors classification and pharmacological features

OPIOIDS and opioid derivatives

ANTIDEPRESSANT DRUGS: ethiopathogenesis of depression. The monoaminergic, neuroendocrine and neurotrophic theories. Antidepressant drugs classifications and mechanisms of action.

ANTIPSYCHOTIC DRUGS: ethiopathogenesis of psychosis. The dopaminergic and neurodevelopmental theories. Typical and atypical antipsychotic drugs and mechanisms of action.

PHARMACOGENOMICS AND DRUGS OF THE CENTRAL NERVOUS SYSTEM
Elements of human genetic variation - basis on genetic variants affecting protein function and epigenetic effects of pharmacological relevance. Clinical pharmacogenetic implementation guidelines for drugs acting on the central nervous system.

PART1: NEUROANATOMY
1) Lecture notes (PDF)
2) Fitzgerald's Clinical Neuroanatomy and Neuroscience, Authors: Estomih Mtui, Gregory Gruener, Peter Dockery; 8th Edition - August 4, 2020

PART 2: NEUROPHARMACOLOGY
Rang, Ritter, Flower, Henderson "Rang & Dale's Pharmacology"

PART 1 - NEUROANATOMY

- Knowledge of the microscopic and macroscopic structures and functions of the Central Nervous System.
- Understanding morphology of the different neuroanatomical areas in relation to their function: (A) Central Nervous System (from Spinal Cord to Multimodal Association Cortex and Ascending and Descending Tracts); (B) Peripheral Nervous System and Autonomic Nervous System (course and function of Spinal Nerves and Cranial Nerves).
- Being able to know the anatomical areas and their functions in normal and pathological conditions in relation to the main neurological disorders.
- Ability to use the correct neuroanatomical terminology; improving knowledge autonomously by reading scientific papers and textbooks and consult the scientific websites relevant to the topic.

The overall aim of the part 1 is to provide students with a basic understanding of the structural (and functional) organization of the human central nervous system (Knowledge and understanding), in sufficient depth to form the basis for further clinical or research studies (Applying knowledge and understanding; Making judgements; Communication and Learning skills).
PART 2: NEUROPHARMACOLOGY

To provide robust basis of Neuropharmacology, discussing the principles at the basis of the pharmacokinetic, pharmacodynamics and pharmacogenomics properties of drugs, particularly of those acting at the peripheral and central nervous system.

1) Knowledge and understanding: at the end of the course, the students should have acquired the basic notions for the comprehension of the pharmacokinetic and pharmacodynamics properties of drugs and of their mechanism of action, with particular reference to drugs acting at the central nervous system.

2) Applying knowledge and understanding: at the end of the course, the students should be able to use the knowledges acquired (see point 1) for a proper use of drugs in experimental set-ups (in vivo as well as in vitro) as tools to validate hypothesis regarding the involvement of endogenous neurotransmitters in controlling physio-pathological conditions.

3) Making judgements: at the end of the course, the students should be able to apply their pharmacokinetic and pharmacodynamics knowledges for a critical consideration of experimental results aimed at investigating the involvement of signaling molecules in physiological and pathological processes.

4) Communication skills: at the end of the course, the students should be able to discuss clearly and with appropriate scientific terms pharmacological concepts.

5) Learning skills: at the end of the course, the students should have a well-build background that should enable them to continue to enlarge autonomously and critically their knowledges about the pharmacokinetic and pharmacodynamics properties of drugs.

No prerequisites

PART 1 - NEUROANATOMY: The program is constituted by frontal lessons (slides, neuroanatomy and techniques of brain cutting video and examples of clinic cases).

PART 2 - NEUROPHARMACOLOGY: Computer-aided frontal lectures (slides with images and short texts reassuming the essential aspects of the lessons).

Students are provided by the slides used during the frontal lessons thought Moodle. For further information, students are invited to contact prof. Stocco by mail (stoccog@units.it) using their institutional E-mail address.

Any necessary change in the course modalities due to COVID19 emergency will be published at the Department, Master Programme and Course websites.

PART 1 - NEUROANATOMY: a) During the course: written test with multiple choice questions (30 questions with one correct answer and several wrong answers with a point for each correct answer and zero for wrong answers or no answers); b) At the end of the course: oral examination, in which the student must be able to use the correct neuroanatomical terminology and to know the main anatomical areas and their main functions, the sensory and motor pathways, the autonomic nervous system and blood supply of the brain. The final grade is explained below.

PART 2 - NEUROPHARMACOLOGY: At the end of the course, students are required to take a final oral examination of 20-40 min consisting on two different topics covering the course program. The student should demonstrate to be able to link together different topics of the program and to communicate the acquired knowledges in a precise and efficacious manner. The mark/30 must be equal or higher than 18.

The final mark/30 is the arithmetic mean of Part 1 (Neuroanatomy) and Parts 2 (Neuropharmacology).
NEUROANATOMY
Main features of structure of Central and Peripheral Nervous System:
Structure of the Neuron and Glia and Organization of the Nervous Tissue.
DEVELOPMENT, AGING AND PLASTICITY:
The Role of Environment in Development of the Nervous System;
Age-Related Changes in the Normal Brain and Their Consequences
Age-Related Changes in Neurodegenerative Disorders
THE AUTONOMIC NERVOUS SYSTEM
Sympathetic System
Parasympathetic System
PARS OF THE CENTRAL NERVOUS SYSTEM:
the Spinal Cord; The Brain Stem; the Cerebrum; the Cerebellum.
The Meninges; the Cerebral Ventricles and the Cerebrospinal Fluid.
The Blood Supply: the Blood-Brain Barrier; Arterial System; Venous System
SENSORY SYSTEMS:
The Visual System
The Auditory System
The Sense of Equilibrium
The Olfactory System and the Sense of Taste
MOTOR SYSTEMS
The Motor Cortical Areas and Descending Pathways, The Pyramidal Tract (Corticospinal tract), Indirect Corticospinal Pathways-
The Basal Ganglia:
Structure and Connections of Basal Ganglia-
The Cerebellum-
THE BRAIN STEM AND CRANIAL NERVES:
The Reticular Formation
The Cranial Nerves
Hypothalamus
The Thalamus
LIMBIC STRUCTURES
THE CEREBRAL CORTEX
The Cerebral Cortex: Intrinsic Organization and Connections, Functions of the Neocortex, Association Areas, The Division of tasks between the Hemispheres

Obiettivi per lo sviluppo sostenibile

<table>
<thead>
<tr>
<th>Codice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>