Testi del Syllabus

<table>
<thead>
<tr>
<th>Resp. Did.</th>
<th>TONGIORGI ENRICO</th>
<th>Matricola: 005813</th>
</tr>
</thead>
</table>
| Docenti | BAJ GABRIELE, 3 CFU
 | TONGIORGI ENRICO, 9 CFU |
| Anno offerta: | 2017/2018 |
| Insegnamento: | 741SM - NEUROBIOLOGIA CELLULARE E MOLECOLARE |
| Corso di studio: | SM54 - NEUROSCIENZE |
| Anno regolamento: | 2017 |
| CFU: | 12 |
| Settore: | BIO/06 |
| Tipo Attività: | B - Caratterizzante |
| Anno corso: | 1 |
| Periodo: | Primo Semestre |
| Sede: | TRIESTE |

Testi in italiano

Lingua insegnamento
English

Contenuti (Dipl.Sup.)
The purpose of the course is to give an overview of molecular mechanisms that regulate the principal cellular functions of neurons and glial cells. Topics of the course are: PART A (Tongiorgi) The cellular basis of the nervous system: I Cellular diversity of the neurons; II Glial cells; III Glial cells and the formation of the myelin, IV The synapse. Inside the neuron: I Organelles, Golgi apparatus & secretion; II mechanisms of presynaptic secretion; III The postsynaptic density; IV cytoskeleton & molecular motors (axonal transport); V Dendritic spines. Functional cellular neurobiology: I Dendritic mRNA targeting and local protein synthesis; II Neurotrophins and their signalling; III Hippocampal anatomy and LTP.

PART B (Baj) This part of the course is focused on the principal techniques used to investigate biological questions related to neuronal growth and differentiation. Practical sessions will be based on the methods to prepare, grow, transfect and measure the morphology of neurons in culture. A brief introduction on the microscopy practices more used in neuroscience research is included.

PART C Applied Neurosciences: a short course with the help of specialists from pharmaceutical, biotechnological and nutraceutical industries on the making of new treatments in the field of brain diseases and on technology transfer from the idea to a product.

Testi di riferimento
- Articles and handsouts provided by the teachers.
- Squire et al. “Fundamental neuroscience”
- “Dendrites” by K. Harris & J. Fiala

Obiettivi formativi
The aim of the course is to familiarize the students with the concept of the relationship between the structure of the different subcellular structures of a neuron and their role in the physiological functions with emphasis on the molecular mechanisms. The practical and theoretical lectures also aim at introducing the students to the scientific methodology typical of cellular neurobiology.
The practical module (Techniques) of the course aims at teaching students how to design a cell-based assay to address specific biological problems in neuroscience.

The module Applied Neuroscience is a professionalizing short course aims at introducing students to the basic concepts of technology transfer by exposing them to the industrial approaches to treat and diagnose brain disorders.

Prerequisites

Basic courses (from a previous degree) in cell biology, histology and physiology

Metodi didattici

Frontal lectures with power point slide projections and short movies (prof. Tongiorgi).

The course has also a module with practical lab/microscopy exercise and preparatory lessons (Dr.Baj)

Modalità di verifica dell'apprendimento

Written exam (+ facultative Oral exam) for Cellular and Molecular Neurobiology and Techniques modules. Exercises in the classroom and a group-essay for Applied Neurosciences.

Programma esteso

PART B (Baj)

APPLIED NEUROSCIENCES: The course is organized every year during the second week of January and lectures are hold by ~12-15 highly qualified experts from industries operating mainly in Italy and Europe. Topics of the lectures are updated every year and generally are subdivided in 5 days of seminars dealing with: DAY 1: Target identification & in vitro drug testing at pharmaceutical companies. DAY 2) Drug discovery for CNS at a Contract Research Organization (CRO). DAY 3) Developing innovative therapeutic approaches at biotech companies. DAY4) Regulatory affairs and technology transfer. DAY 5) What means Innovation and what is technology transfer? – On site visits at Companies or at Area di Ricerca are possible.
The purpose of the course is to give an overview of molecular mechanisms that regulate the principal cellular functions of neurons and glial cells. Topics of the course are: PART A (Tongiorgi) The cellular basis of the nervous system: I Cellular diversity of the neurons; II Glial cells; III Glial cells and the formation of the myelin, IV The synapse. Inside the neuron: I Organelles, Golgi apparatus & secretion; II mechanisms of presynaptic secretion; III The postsynaptic density; IV cytoskeleton & molecular motors (axonal transport); V Dendritic spines. Functional cellular neurobiology: I Dendritic mRNA targeting and local protein synthesis; II Neurotrophins and their signalling; III Hippocampal anatomy and LTP.

PART B (Baj) This part of the course is focused on the principal techniques used to investigate biological questions related to neuronal growth and differentiation. Practical sessions will be based on the methods to prepare, grow, transflect and measure the morphology of neurons in culture. A brief introduction on the microscopy practices more used in neuroscience research is included.

PART C Applied Neurosciences: a short course with the help of specialists from pharmaceutical, biotechnological and nutraceutical industries on the making of new treatments in the field of brain diseases and on technology transfer from the idea to a product.

The aim of the course is to familiarize the students with the concept of the relationship between the structure of the different subcellular structures of a neuron and their role in the physiological functions with emphasis on the molecular mechanisms. The practical and theoretical lectures also aim at introducing the students to the scientific methodology typical of cellular neurobiology.

The practical module (Techniques) of the course aims at teaching students how to design a cell-based assay to address specific biological problems in neuroscience.

The module Applied Neuroscience is a professionalizing short course aims at introducing students to the basic concepts of technology transfer by exposing them to the industrial approaches to treat and diagnose brain disorders.

Basic courses (from a previous degree) in cell biology, histology and physiology

Frontal lectures with power point slide projections and short movies (prof. Tongiorgi).

The course has also a module with practical lab/microscopy exercise and preparatory lessons (Dr.Baj)

Written exam (+ facultative Oral exam) for Cellular and Molecular Neurobiology and Techniques modules. Exercises in the classroom and a group-essay for Applied Neurosciences.

CELLULAR AND MOLECULAR NEUROBIOLOGY: LESSONS 1-4. The cellular organization of the nervous system: 1) Neurons & The neural cellular theory; 2) Glial cells and the BBB; 3) Glial cells and the Myelin; 4) Astrocytes and the tripartite synapse. LESSONS 5-6. The synaptic spacialization: 5) Dendritic Spines; 6) History and general features of the synapse. LESSONS 7-12. Inside the neuron: 7) organelles and secretion; 8) molecular mechanisms of protein secretion; 9) structural organization of (excitatory/inhibitory) presynaptic terminals; 10) the postsynaptic density; 11) molecular mechanisms of postsynaptic density maintenance

PART B (Baj)

APPLIED NEUROSCIENCES: The course is organized every year during the second week of January and lectures are hold by ~12-15 highly qualified experts from industries operating mainly in Italy and Europe. Topics of the lectures are updated every year and generally are subdivided in 5 days of seminars dealing with: DAY 1: Target identification & in vitro drug testing at pharmaceutical companies. DAY 2) Drug discovery for CNS at a Contract Research Organization (CRO). DAY 3) Developing innovative therapeutic approaches at biotech companies. DAY4) Regulatory affairs and technology transfer. DAY 5) What means Innovation and what is technology transfer? – On site visits at Companies or at Area di Ricerca are possible.